Export 114 results:
Author [ Title(Desc)] Type Year
Filters: First Letter Of Title is H  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
H
P. Radetsky, How did life start? (10 great unanswered questions of science), Discover, vol. 13, pp. 74–80, 1992.
M. K. Tivey, How to build a black smoker chimney, Oceanus, vol. 41, pp. 22–26, 1998.
R. D. Ballard, How we found Titanic, National Geographic Magazine, vol. 168, pp. 696–719, 1985.
W. Kohnen, Human exploration of the deep seas: fifty years and the inspiration continues, Marine Technology Society Journal, vol. 43, pp. 42–62, 2009.
A. S. Hatch, Liew, H., Hourdez, S., and Rouse, G. W., Hungry scale worms: Phylogenetics of Peinaleopolynoe (Polynoidae, Annelida), with four new species, ZooKeys, vol. 932, pp. 27-74, 2020.
G. D. O'Mullan, A Y Maas, P., Lutz, R. A., and Vrijenhoek, R. C., A hybrid zone between hydrothermal vent mussels (Bivalvia: Mytilidae) from the Mid-Atlantic Ridge, Molecular Ecology, vol. 10, pp. 2819–2831, 2001.
K. A. Kvenvolden, Rapp, J. B., and Hostettler, F. D., Hydrocarbon geochemistry of hydrothermally generated petroleum from Escanaba trough, offshore California U.S.A, Applied Geochemistry, vol. 5, pp. 83–91, 1990.
C. Johansen, Macelloni, L., Natter, M., Silva, M., Woosley, M., Woolsey, A., Diercks, A. R., Hill, J., Viso, R., Marty, E., Lobodin, V. V., Shedd, W., Joye, S. B., and MacDonald, I. R., Hydrocarbon migration pathway and methane budget for a Gulf of Mexico natural seep site: Green Canyon 600, Earth and Planetary Science Letters, vol. 545, p. 116411, 2020.
C. J. Dalzell, Ventura, G. T., Walters, C. C., Nelson, R. K., Reddy, C. M., Seewald, J. S., and Sievert, S. M., Hydrocarbon transformations in sediments from the Cathedral Hill hydrothermal vent complex at Guaymas Basin, Gulf of California-A chemometric study of shallow seep architecture, Organic Geochemistry, vol. 152, 2021.
B. R. T. Simoneit, Brault, M., and Saliot, A., Hydrocarbons associated with hydrothermal minerals, vent waters and talus on the East Pacific Rise and Mid-Atlantic Ridge, Applied Geochemistry, vol. 5, pp. 115–124, 1990.
D. A. Bazylinski, Farrington, J. W., and Jannasch, H. W., Hydrocarbons in surface sediments from a Guaymas Basin hydrothermal vent site, Organic Geochemistry, vol. 12, pp. 547–558, 1988.
L. C. Stewart, Llewellyn, J. G., Butterfield, D. A., Lilley, M. D., and Holden, J. F., Hydrogen and thiosulfate limits for growth of a thermophilic, autotrophic Desulfurobacterium species from a deep-sea hydrothermal vent, ENVIRONMENTAL MICROBIOLOGY REPORTS, vol. 8, pp. 196–200, 2016.
E. J. Screaton, Carson, B., and Lennon, G. P., Hydrogeologic properties of a thrust fault within the Oregon Accretionary Prism, Journal of Geophysical Research, vol. 100, pp. 20,20–25,3, 1995.
D. R. Calder, Hydroid diversity and species composition along a gradient from shallow waters to deep sea around Bermuda, Deep-Sea Research. Part I: Oceanographic Research Papers, vol. 45, pp. 1843–1860, 1998.
D. R. Calder, Hydroids (Cnidaria: Hydrozoa) recorded from depths exceeding 3000 m in the abyssal western North Atlantic, Canadian Journal of Zoology, vol. 74, pp. 1721–1726, 1996.
E. E. Davis, Becker, K., Dziak, R. P., Cassidy, J. F., Wang, K., and Lilley, M., Hydrological response to a seafloor spreading episode on the Juan de Fuca ridge, Nature, vol. 430, pp. 335–338, 2004.
R. L. Waterman and Humphries, P. E., Hydrostatic creep tests of a 6A1-4V titanium sphere for Alvin. Bethesda, Md.: Naval Ship Research and Development Center, 1967, p. 25.
A. E. Dadley, Hydrostatic proof test of Autec I (Alvin 3) personnel sphere. Bethesda, Md.: Naval Ship Research and Development Center, 1967.
P. E. Humphries, Hydrostatic tests of a 6A1-4V titanium buoyancy sphere for Alvin. Bethesda, Md.: David Taylor Model Basin, 1967.
K. Fujioka, Mitsuzawa, K., Kinoshita, M., Ishibashi, J., Joshima, M., Shitashima, K., Maruyama, A., and Cowen, J. P., Hydrothermal activity and long-term monitoring at Southern East Pacific Rise - Preliminary results of the Ridge Flux SEPR'97 Leg 2 cruise, JAMSTEC Journal of Deep Sea Research, pp. 21–33, 1999.
P. A. Rona, Thompson, G., Mottl, M. J., Karson, J. A., Jenkins, W. J., Graham, D., Mallette, M., Von Damm, K. L., and Edmond, J. M., Hydrothermal activity at the TAG hydrothermal field, Mid-Atlantic Ridge crest at 26 degrees N, Journal of Geophysical Research, vol. 89, pp. 11,311–365,379, 1984.
W. I. Ridley, Perfit, M. R., Jonasson, I. R., and Smith, M. F., Hydrothermal alteration in oceanic ridge volcanics: A detailed study at the Galapagos fossil hydrothermal field, Geochimica et Cosmochimica Acta, vol. 58, pp. 2477–2494, 1994.
C. Wilson, Charlou, J. L., Ludford, E., Klinkhammer, G., Chin, C., Bougault, H., German, C. R., Speer, K., and Palmer, M., Hydrothermal anomalies in the Lucky Strike segment on the Mid-Atlantic Ridge (37 degrees 17'N), Earth and Planetary Science Letters, vol. 142, pp. 467–477, 1996.
H. P. Johnson, Tivey, M. A., Bjorklund, T. A., and Salmi, M. S., Hydrothermal circulation within the Endeavour Segment, Juan de Fuca Ridge, Geochemistry, Geophysics, Geosystems, vol. 11, p. Q05002, 2010.
E. T. Baker, Chadwick, W. W., Cowen, J. P., Dziak, R. P., Rubin, K. H., and Fornari, D. J., Hydrothermal Discharge During Submarine Eruptions THE IMPORTANCE OF DETECTION, RESPONSE, AND NEW TECHNOLOGY, Oceanography, vol. 25, pp. 128–141, 2012.

Pages