Export 2610 results:
Author [ Title(Desc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
C
G. W. Luther, Gartman, A., Yuecel, M., Madison, A. S., Moore, T. S., Nees, H. A., Nuzzio, D. B., Sen, A., Lutz, R. A., Shank, T. M., and Fisher, C. R., Chemistry, Temperature, and Faunal Distributions at Diffuse-Flow Hydrothermal Vents Comparison of Two Geologically Distinct Ridge Systems, Oceanography, vol. 25, pp. 234–245, 2012.
D. C. Nelson and Fisher, C. R., Chemoautotrophic and methanotrophic endosymbiotic bacteria at deep-sea vents and seeps, in Microbiology of Deep Sea Hydrothermal Vents, D. M. Karl, Ed. Boca Raton, Fla.: CRC Press, 1995, pp. 125–167.
C. R. Fisher, Chemoautotrophic and methanotrophic symbioses in marine invertebrates, Reviews in Aquatic Sciences, vol. 2, pp. 399–436, 1990.
H. Felbeck, Chemoautotrophic potential of the hydrothermal vent tube worm, Riftia pachyptila Jones (Vestimentifera), Science, vol. 213, pp. 336–338, 1981.
J. L. Stein, Cary, S. C., Childress, J. J., Hessler, R. R., Ohta, S., Vetter, R. D., and Felbeck, H., Chemoautotrophic symbiosis in a hydrothermal vent gastropod, Biological Bulletin, vol. 174, pp. 373–378, 1988.
M. Fox, Juniper, S. K., and Vali, H., Chemoautotrophy as a possible nutritional source in the hydrothermal vent limpet Lepetodrilus fucensis, Cahiers de Biologie Marine, vol. 43, pp. 371–376, 2002.
H. W. Jannasch, Chemolithotrophic productivity at deep-sea hydrothermal vents, in Recent advances in microbial ecology: Proceedings of the 5th International Symposium on Microbiology and Ecology, T. Hattori, Ed. Tokyo: Japan Scientific Societies Press, 1989, pp. 23–27.
H. W. Jannasch, Chemosynthesis: The nutritional basis for life at deep-sea vents, Oceanus, vol. 27, pp. 73–78, 1984.
T. Matsumoto, Kimura, M., Nishida, S., Nakamura, T., and Ono, T., Chemosynthetic communities and surface ruptures discovered on the Kuroshima Knoll south of Yaeyama Islands (NT97-14 Cruise), JAMSTEC Journal of Deep Sea Research, pp. 477–491, 1999.
C. L. Van Dover, Chemosynthetic communities in the deep sea: ecological studies, Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution, Cambridge, MA and Woods Hole, MA, 1989.
O. S. Ashford, Guan, S., Capone, D., Rigney, K., Rowley, K., Orphan, V., Mullin, S. W., Dawson, K. S., Cortes, J., Rouse, G. W., Mendoza, G. F., Lee, R. W., Cordes, E. E., and Levin, L. A., A chemosynthetic ecotone—“chemotone”—in the sediments surrounding deep‐sea methane seeps, Limnology and Oceanography, 2021.
O. S. Ashford, Guan, S. Z., Capone, D., Rigney, K., Rowley, K., Orphan, V., Mullin, S. W., Dawson, K. S., Cortes, J., Rouse, G. W., Mendoza, G. F., Lee, R. W., Cordes, E. E., and Levin, L. A., A chemosynthetic ecotone-"chemotone"-in the sediments surrounding deep-sea methane seeps, Limnology and Oceanography, 2021.
C. O. Wirsen, Jannasch, H. W., and Molyneaux, S. J., Chemosynthetic microbial activity at Mid-Atlantic Ridge hydrothermal vent sites, Journal of Geophysical Research, vol. 98, pp. 9693–9703, 1993.
H. W. Jannasch, Chemosynthetic microbial mats of deep sea hydrothermal vents, in Microbial Mats, Stromatolites: Based on the Proceedings of the Integrated Approach to the Study of Microbial Mats, July 26-31, 1982, Sponsored by Microbial Ecology and Marine Ecology Courses, and the Ecosystems Center, Marine Biological Laboratory, Woods, Y. Cohen, Ed. New York, N.Y.: A.R. Liss, 1984, pp. 121–131.
H. W. Jannasch and Wirsen, C. O., Chemosynthetic primary production at East Pacific sea floor spreading centers, BioScience, vol. 29, pp. 592–598, 1979.
H. W. Jannasch, Chemosynthetic production of biomass: An idea from a recent oceanographic discovery, Oceanus, vol. 22, pp. 59–63, 1979.
H. W. Jannasch, The chemosynthetic support of life and the microbial diversity at deep-sea hydrothermal vents, Proceedings Royal Society of London Series B Biological Sciences, vol. 225, pp. 277–297, 1985.
H. W. Jannasch, Chemosynthetically sustained ecosystems in the deep sea, in Autotrophic Bacteria, H. G. Schlegel, Ed. Madison, Wis., and Berlin: Science Tech Publ. and Springer-Verlag, 1989, pp. 147–166.
B. Shillito, Lübbering, B., Lechaire, J. P., Childress, J., and Gaill, F., Chitin localization in the secretion system of a deep-sea tube worm, Journal of Structural Biology, vol. 114, pp. 67–75, 1995.
E. Pante and Watling, L., Chrysogorgia from the New England and Corner Seamounts: Atlantic-Pacific connections, JOURNAL OF THE MARINE BIOLOGICAL ASSOCIATION OF THE UNITED KINGDOM, vol. 92, pp. 911–927, 2012.
V. P. Edgcomb and Pachiadaki, M., Ciliates along Oxyclines of Permanently Stratified Marine Water Columns, Journal of Eukaryotic Microbiology, vol. 61, pp. 434–445, 2014.
S. R. Laming, Hourdez, S., Cambon-Bonavita, M. - A., and Pradillon, F., Classical and computed tomographic anatomical analyses in a not-so-cryptic Alviniconcha species complex from hydrothermal vents in the SW Pacific, Frontiers in Zoology, vol. 17, p. 12, 2020.
J. B. Percival and Ames, D. E., Clay mineralogy of active hydrothermal chimneys and an associated mound, Middle Valley, northern Juan de Fuca Ridge, Canadian Mineralogist, vol. 31, pp. 957–971, 1993.
M. P. Segall, Kuehl, S. A., and Gipson, M., Clay-size minerals as indicators of modern sedimentary processes in submarine canyons: Application to the Wilmington canyon system, Marine Geology, vol. 90, pp. 175–192, 1989.
M. Winkel, de Beer, D., Lavik, G., Peplies, J., and Mussmann, M. I., Close association of active nitrifiers with Beggiatoa mats covering deep-sea hydrothermal sediments, ENVIRONMENTAL MICROBIOLOGY, vol. 16, pp. 1612–1626, 2014.

Pages