Export 2610 results:
Author Title [ Type(Desc)] Year
Journal Article
A. Gracia, Levin, L. A., and Zea, S., Meio-epifaunal wood colonization in the vicinity of methane seeps, Marine Ecology-an Evolutionary Perspective, 2019.
C. Vetriani, Chew, Y. S., Miller, S. M., Yagi, J., Coombs, J., Lutz, T. A., and Barkay, T., Mercury adaptation among bacteria from a deep-sea hydrothermal vent, Applied and Environmental Microbiology, vol. 71, pp. 220–226, 2005.
L. S. Sherman, Blum, J. D., Nordstrom, D. K., McCleskey, R. B., Barkay, T., and Vetriani, C., Mercury isotopic composition of hydrothermal systems in the Yellowstone Plateau volcanic field and Guaymas Basin sea-floor rift, Earth and Planetary Science Letters, vol. 279, pp. 86–96, 2009.
J. R. Voight, Meristic variation in males of the hydrothermal vent octopus, Muusoctopus hydrothermalis (Cephalopoda: Octopodidae), JOURNAL OF THE MARINE BIOLOGICAL ASSOCIATION OF THE UNITED KINGDOM, vol. 92, pp. 361–366, 2012.
L. Macelloni, Lutken, C. B., Ingrassia, M., Emidio, M. D. ', and Pizzi, M., Mesoscale biogeophysical characterization of Woolsey Mound (northern Gulf of Mexico), a new attribute of natural marine hydrocarbon seeps architecture, Marine Geology, vol. 380, pp. 330–344, 2016.
J. J. Childress, Arp, A. J., and Fisher, C. R., Metabolic and blood characteristics of the hydrothermal vent tube worm Riftia pachypitila, Marine Biology, vol. 83, pp. 109–124, 1984.
A. J. Arp, Childress, J. J., and Fisher, C. R., Metabolic and blood gas transport characteristics of the hydrothermal vent bivalve Calyptogena magnifica, Physiological Zoology, vol. 57, pp. 648–662, 1984.
M. S. Henry, Childress, J. J., and Figueroa, D., Metabolic rates and thermal tolerances of chemoautotrophic symbioses from Lau Basin hydrothermal vents and their implications for species distributions, Deep-Sea Research. Part I: Oceanographic Research Papers, vol. 55, pp. 679–695, 2008.
J. J. Childress, Cowles, D. L., Favuzzi, J. A., and Mickel, T. J., The metabolic rates of deep-sea benthic decapod crustaceans decline with increasing depth primarily due to the decline in temperature, Deep-Sea Research. Part A, Oceanographic Research Papers, vol. 37, pp. 929–949, 1990.
K. L. Smith, Metabolism of the abyssopelogic rattail Conyphaenoides anmatus measured in situ, Nature, vol. 274, pp. 362–364, 1978.
K. L. Smith, Metabolism of two dominant epibenthic echinoderms measured at bathyal depths in the Santa Catalina Basin, Marine Biology, vol. 72, pp. 249–256, 1982.
P. R. Girguis and Childress, J. J., Metabolite uptake, stoichiometry and chemoautotrophic function of the hydrothermal vent tubeworm Riftia pachyptila: responses to environmental variations in substrate concentrations and temperature, Journal of Experimental Biology, vol. 209, pp. 3516–3528, 2006.
Y. He, Xiao, X., and Wang, F., Metagenome reveals potential microbial degradation of hydrocarbon coupled with sulfate reduction in an oil-immersed chimney from Guaymas Basin, FRONTIERS IN MICROBIOLOGY, vol. 4, 2013.
J. Reveillaud, Anderson, R., Reves-Sohn, S., Cavanaugh, C., and Huber, J. A., Metagenomic investigation of vestimentiferan tubeworm endosymbionts from Mid-Cayman Rise reveals new insights into metabolism and diversity, Microbiome, vol. 6, no. Journal Article, pp. 19 - 19, 2018.
K. Anantharaman, Breier, J. A., and Dick, G. J., Metagenomic resolution of microbial functions in deep-sea hydrothermal plumes across the Eastern Lau Spreading Center, ISME JOURNAL, vol. 10, pp. 225–239, 2016.
A. Koschinsky, Kausch, M., and Borowski, C., Metal concentrations in the tissues of the hydrothermal vent mussel Bathymodiolus: Reflection of different metal sources, Marine Environmental Research, vol. 95, pp. 62–73, 2014.
H. Q. Yao, Zhou, H. Y., Peng, X. T., Bao, S. X., Wu, Z. J., Li, J. T., Sun, Z. L., Chen, Z. Q., Li, J. W., and Chen, G. Q., Metal sources of black smoker chimneys, Endeavour Segment, Juan de Fuca Ridge: Pb isotope constraints, Applied Geochemistry, vol. 24, pp. 1971–1977, 2009.
G. W. Luther and Rickard, D. T., Metal sulfide cluster complexes and their biogeochemical importance in the environment, Journal of Nanoparticle Research, vol. 7, pp. 389–407, 2005.
P. F. Lonsdale, Batiza, R., and Simkin, T., Metallogenesis at seamounts on the East Pacific Rise, Marine Technology Society Journal, vol. 16, pp. 54–61, 1982.
O. Brevart, Dupre, B., and Allegre, C. J., Metallogenesis at spreading centers: Lead isotope systematics for sulfides, manganese-rich crusts, basalts, and sediments from the Cyamex and Alvin areas (East Pacific Rise), Economic Geology, vol. 76, pp. 1205–1210, 1981.
J. A. Vargas, Hilton, D. R., Ramirez, C., and Molina, J., Metals in bivalve mollusks from the Jaco Scar seep, Pacific, Costa Rica, Revista de biologia tropical, vol. 66, no. Journal Article, pp. S269 - S279, 2018.
D. S. Jones, Flood, B. E., and Bailey, J. V., Metatranscriptomic insights into polyphosphate metabolism in marine sediments, ISME JOURNAL, vol. 10, pp. 1015–1019, 2016.
J. G. Sanders, Beinart, R. A., Stewart, F. J., Delong, E. F., and Girguis, P. R., Metatranscriptomics reveal differences in in situ energy and nitrogen metabolism among hydrothermal vent snail symbionts, ISME JOURNAL, vol. 7, pp. 1556–1567, 2013.
E. R. McMullin, Bergquist, D. C., and Fisher, C. R., Metazoans in Extreme Environments: Adaptations of Hydrothermal Vent and Hydrocarbon Seep Fauna, Gravitational and Space Biology Bulletin, vol. 13, pp. 13–23, 2000.
J. M. Bernhard, Morrison, C. R., Pape, E., Beaudoin, D. J., M Todaro, A., Pachiadaki, M. G., Kormas, K. Ar, and Edgcomb, V. P., Metazoans of redoxcline sediments in Mediterranean deep-sea hypersaline anoxic basins, BMC BIOLOGY, vol. 13, 2015.

Pages