Export 2610 results:
Author [ Title(Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
M
P. F. Lonsdale, Batiza, R., and Simkin, T., Metallogenesis at seamounts on the East Pacific Rise, Marine Technology Society Journal, vol. 16, pp. 54–61, 1982.
G. W. Luther and Rickard, D. T., Metal sulfide cluster complexes and their biogeochemical importance in the environment, Journal of Nanoparticle Research, vol. 7, pp. 389–407, 2005.
H. Q. Yao, Zhou, H. Y., Peng, X. T., Bao, S. X., Wu, Z. J., Li, J. T., Sun, Z. L., Chen, Z. Q., Li, J. W., and Chen, G. Q., Metal sources of black smoker chimneys, Endeavour Segment, Juan de Fuca Ridge: Pb isotope constraints, Applied Geochemistry, vol. 24, pp. 1971–1977, 2009.
A. Koschinsky, Kausch, M., and Borowski, C., Metal concentrations in the tissues of the hydrothermal vent mussel Bathymodiolus: Reflection of different metal sources, Marine Environmental Research, vol. 95, pp. 62–73, 2014.
K. Anantharaman, Breier, J. A., and Dick, G. J., Metagenomic resolution of microbial functions in deep-sea hydrothermal plumes across the Eastern Lau Spreading Center, ISME JOURNAL, vol. 10, pp. 225–239, 2016.
J. Reveillaud, Anderson, R., Reves-Sohn, S., Cavanaugh, C., and Huber, J. A., Metagenomic investigation of vestimentiferan tubeworm endosymbionts from Mid-Cayman Rise reveals new insights into metabolism and diversity, Microbiome, vol. 6, no. Journal Article, pp. 19 - 19, 2018.
Y. He, Xiao, X., and Wang, F., Metagenome reveals potential microbial degradation of hydrocarbon coupled with sulfate reduction in an oil-immersed chimney from Guaymas Basin, FRONTIERS IN MICROBIOLOGY, vol. 4, 2013.
P. R. Girguis and Childress, J. J., Metabolite uptake, stoichiometry and chemoautotrophic function of the hydrothermal vent tubeworm Riftia pachyptila: responses to environmental variations in substrate concentrations and temperature, Journal of Experimental Biology, vol. 209, pp. 3516–3528, 2006.
K. L. Smith, Metabolism of two dominant epibenthic echinoderms measured at bathyal depths in the Santa Catalina Basin, Marine Biology, vol. 72, pp. 249–256, 1982.
K. L. Smith, Metabolism of the abyssopelogic rattail Conyphaenoides anmatus measured in situ, Nature, vol. 274, pp. 362–364, 1978.
J. J. Childress, Cowles, D. L., Favuzzi, J. A., and Mickel, T. J., The metabolic rates of deep-sea benthic decapod crustaceans decline with increasing depth primarily due to the decline in temperature, Deep-Sea Research. Part A, Oceanographic Research Papers, vol. 37, pp. 929–949, 1990.
J. J. Childress and Mickel, T. J., Metabolic rates of animals from the hydrothermal vents and other deep-sea habitats., in Hydrothermal vents of the Eastern Pacific: An overview, M. L. Jones, Ed. Vienna, Va.: INFAX, 1985, pp. 249–260.
M. S. Henry, Childress, J. J., and Figueroa, D., Metabolic rates and thermal tolerances of chemoautotrophic symbioses from Lau Basin hydrothermal vents and their implications for species distributions, Deep-Sea Research. Part I: Oceanographic Research Papers, vol. 55, pp. 679–695, 2008.
J. J. Childress and Thuesen, E. V., Metabolic potentials of deep-sea fishes: a comparative approach, in Environmental and Ecological Biochemistry, P. W. Hochachka, Ed. New York: Elsevier, 1995, pp. 175–196.
A. J. Arp, Childress, J. J., and Fisher, C. R., Metabolic and blood gas transport characteristics of the hydrothermal vent bivalve Calyptogena magnifica, Physiological Zoology, vol. 57, pp. 648–662, 1984.
J. J. Childress, Arp, A. J., and Fisher, C. R., Metabolic and blood characteristics of the hydrothermal vent tube worm Riftia pachypitila, Marine Biology, vol. 83, pp. 109–124, 1984.
H. Felbeck, Powell, M. A., Hand, S. A., and Somero, G. N., Metabolic adaptations of hydrothermal vent animals, in Hydrothermal vents of the Eastern Pacific: An overview, M. L. Jones, Ed. Vienna, Va.: INFAX, 1985, pp. 261–272.
E. Uchupi, Ellis, J. P., Austin, J. A., Keller, G. H., and Ballard, R. D., Mesozoic-Cenozoic regressions and the development of margin off northeastern North America, in Ocean Floor: Bruce Heezen Commemorative Volume, vol. 1 (text), R. A. Scrutton, Ed. New York, N.Y.: Wiley, 1982, pp. 81–95.
L. Macelloni, Lutken, C. B., Ingrassia, M., Emidio, M. D. ', and Pizzi, M., Mesoscale biogeophysical characterization of Woolsey Mound (northern Gulf of Mexico), a new attribute of natural marine hydrocarbon seeps architecture, Marine Geology, vol. 380, pp. 330–344, 2016.
J. R. Voight, Meristic variation in males of the hydrothermal vent octopus, Muusoctopus hydrothermalis (Cephalopoda: Octopodidae), JOURNAL OF THE MARINE BIOLOGICAL ASSOCIATION OF THE UNITED KINGDOM, vol. 92, pp. 361–366, 2012.
L. S. Sherman, Blum, J. D., Nordstrom, D. K., McCleskey, R. B., Barkay, T., and Vetriani, C., Mercury isotopic composition of hydrothermal systems in the Yellowstone Plateau volcanic field and Guaymas Basin sea-floor rift, Earth and Planetary Science Letters, vol. 279, pp. 86–96, 2009.
C. Vetriani, Chew, Y. S., Miller, S. M., Yagi, J., Coombs, J., Lutz, T. A., and Barkay, T., Mercury adaptation among bacteria from a deep-sea hydrothermal vent, Applied and Environmental Microbiology, vol. 71, pp. 220–226, 2005.
P. Briggs, Men in the sea. New York, N.Y.: Simon and Schuster, 1968, p. 128.
A. Gracia, Levin, L. A., and Zea, S., Meio-epifaunal wood colonization in the vicinity of methane seeps, Marine Ecology-an Evolutionary Perspective, 2019.
N. Lampadariou, Syranidou, E., Sevastou, K., and Tselepides, A., Meiobenthos from biogenic structures of the abyssal time-series station in the NE Pacific (Station M), Deep-Sea Research Part Ii-Topical Studies in Oceanography, vol. 173, 2020.

Pages