Export 2610 results:
Author [ Title(Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
C
A. G. Sharp, The coefficient of static friction of monel K-500 on phosphor bronze, vol. 78-77. Woods Hole, Mass.: Woods Hole Oceanographic Institution, 1978, p. 6.
J. Chadwick, Keller, R., Kamenov, G., Yogodzinski, G., and Lupton, J., The Cobb hot spot: HIMU-DMM mixing and melting controlled by a progressively thinning lithospheric lid, GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, vol. 15, pp. 3107–3122, 2014.
S. A. Soule, Nakata, D. S., Fornari, D. J., Fundis, A. T., Perfit, M. R., and Kurz, M. D., CO2 variability in mid-ocean ridge basalts from syn-emplacement degassing: Constraints on eruption dynamics, Earth and Planetary Science Letters, vol. 327–328, pp. 39–49, 2012.
H. Felbeck and Turner, P. J., CO2 transport in catheterized hydrothermal vent tubeworms Riftia pachyptila, Journal of Experimental Zoology, vol. 272, pp. 95–102, 1995.
H. Felbeck, CO2 fixation in the hydrothermal vent tube worm Riftia pachyptila (Jones), Physiological Zoology, vol. 58, pp. 272–281, 1985.
M. Toyokawa, Toda, T., Kikuchi, T., and Nishida, S., Cnidarians and ctenophores observed from the manned submersible Shinkai 2000 in the midwater of Sagami Bay, Pacific coast of Japan, Plankton Biology and Ecology, vol. 45, pp. 61–74, 1998.
Y. Fujioka, Cnidarian Communities on the rocky bottom of upper bathyal zone off Kikai Island, southern Japan, JAMSTEC Journal of Deep Sea Research, pp. 285–304, 1999.
A. M. Hartwell, Voight, J. R., and C. Wheat, G., Clusters of deep-sea egg-brooding octopods associated with warm fluid discharge: An ill-fated fragment of a larger, discrete population?, Deep Sea Research Part I: Oceanographic Research Papers, vol. 135, pp. 1-8, 2018.
D. T. Wang, Reeves, E. P., McDermott, J. M., Seewald, J. S., and Ono, S., Clumped isotopologue constraints on the origin of methane at seafloor hot springs, Geochimica et Cosmochimica Acta, vol. 223, no. Journal Article, pp. 141 - 158, 2018.
R. A. Lutz and Voight, J. R., Close encounter in the deep, Nature, vol. 371, p. 563, 1994.
M. Winkel, de Beer, D., Lavik, G., Peplies, J., and Mussmann, M. I., Close association of active nitrifiers with Beggiatoa mats covering deep-sea hydrothermal sediments, ENVIRONMENTAL MICROBIOLOGY, vol. 16, pp. 1612–1626, 2014.
M. P. Segall, Kuehl, S. A., and Gipson, M., Clay-size minerals as indicators of modern sedimentary processes in submarine canyons: Application to the Wilmington canyon system, Marine Geology, vol. 90, pp. 175–192, 1989.
J. B. Percival and Ames, D. E., Clay mineralogy of active hydrothermal chimneys and an associated mound, Middle Valley, northern Juan de Fuca Ridge, Canadian Mineralogist, vol. 31, pp. 957–971, 1993.
S. R. Laming, Hourdez, S., Cambon-Bonavita, M. - A., and Pradillon, F., Classical and computed tomographic anatomical analyses in a not-so-cryptic Alviniconcha species complex from hydrothermal vents in the SW Pacific, Frontiers in Zoology, vol. 17, p. 12, 2020.
V. P. Edgcomb and Pachiadaki, M., Ciliates along Oxyclines of Permanently Stratified Marine Water Columns, Journal of Eukaryotic Microbiology, vol. 61, pp. 434–445, 2014.
E. Pante and Watling, L., Chrysogorgia from the New England and Corner Seamounts: Atlantic-Pacific connections, JOURNAL OF THE MARINE BIOLOGICAL ASSOCIATION OF THE UNITED KINGDOM, vol. 92, pp. 911–927, 2012.
B. Shillito, Lübbering, B., Lechaire, J. P., Childress, J., and Gaill, F., Chitin localization in the secretion system of a deep-sea tube worm, Journal of Structural Biology, vol. 114, pp. 67–75, 1995.
H. W. Jannasch, Chemosynthetically sustained ecosystems in the deep sea, in Autotrophic Bacteria, H. G. Schlegel, Ed. Madison, Wis., and Berlin: Science Tech Publ. and Springer-Verlag, 1989, pp. 147–166.
H. W. Jannasch, The chemosynthetic support of life and the microbial diversity at deep-sea hydrothermal vents, Proceedings Royal Society of London Series B Biological Sciences, vol. 225, pp. 277–297, 1985.
H. W. Jannasch, Chemosynthetic production of biomass: An idea from a recent oceanographic discovery, Oceanus, vol. 22, pp. 59–63, 1979.
H. W. Jannasch and Wirsen, C. O., Chemosynthetic primary production at East Pacific sea floor spreading centers, BioScience, vol. 29, pp. 592–598, 1979.
H. W. Jannasch, Chemosynthetic microbial mats of deep sea hydrothermal vents, in Microbial Mats, Stromatolites: Based on the Proceedings of the Integrated Approach to the Study of Microbial Mats, July 26-31, 1982, Sponsored by Microbial Ecology and Marine Ecology Courses, and the Ecosystems Center, Marine Biological Laboratory, Woods, Y. Cohen, Ed. New York, N.Y.: A.R. Liss, 1984, pp. 121–131.
C. O. Wirsen, Jannasch, H. W., and Molyneaux, S. J., Chemosynthetic microbial activity at Mid-Atlantic Ridge hydrothermal vent sites, Journal of Geophysical Research, vol. 98, pp. 9693–9703, 1993.
O. S. Ashford, Guan, S. Z., Capone, D., Rigney, K., Rowley, K., Orphan, V., Mullin, S. W., Dawson, K. S., Cortes, J., Rouse, G. W., Mendoza, G. F., Lee, R. W., Cordes, E. E., and Levin, L. A., A chemosynthetic ecotone-"chemotone"-in the sediments surrounding deep-sea methane seeps, Limnology and Oceanography, 2021.
O. S. Ashford, Guan, S., Capone, D., Rigney, K., Rowley, K., Orphan, V., Mullin, S. W., Dawson, K. S., Cortes, J., Rouse, G. W., Mendoza, G. F., Lee, R. W., Cordes, E. E., and Levin, L. A., A chemosynthetic ecotone—“chemotone”—in the sediments surrounding deep‐sea methane seeps, Limnology and Oceanography, 2021.

Pages