Distribution of mega fauna on sulfide edifices on the Eastern Lau Spreading Center and Valu Fa Ridge

TitleDistribution of mega fauna on sulfide edifices on the Eastern Lau Spreading Center and Valu Fa Ridge
Publication TypeJournal Article
Year of Publication2013
AuthorsSen, A, Becker, EL, Podowski, EL, Wickes, LN, Ma, S, Mullaugh, KM, Hourdez, S, Luther, GW, Fisher, CR
JournalDeep-Sea Research. Part I: Oceanographic Research Papers
Volume72
Pagination48–60
ISSN0967-0637
KeywordsROV Jason (Remotely Operated Vehicle)
Abstract

Hydrothermal vent sulfide edifices contain some of the most extreme thermal and chemical conditions in which animals are able to live. As a result, sulfide edifices in the East Pacific Rise, Juan de Fuca Ridge, and Mid Atlantic Ridge vent systems often contain distinct faunal assemblages. In this study, we used high-resolution imagery and in-situ physico-chemical measurements within the context of a Geographic Information System (GIS) to examine community structure and niche differentiation of dominant fauna on sulfide edifices in the Eastern Lau Spreading Center (ELSC) and Valu Fa Ridge (VFR) in the Western Pacific Ocean. Our results show that ELSC and VFR sulfide edifices host two distinct types of communities. One type, that covers the majority of sulfide edifice faces, is overall very similar to nearby lava communities and biomass is dominated by the same chemoautotrophic symbiont-containing molluscs that dominate lava communities, namely the provannid gastropods Alviniconcha spp. and Ifremeria nautilei and the mytilid bivalve Bathymodiolus brevior. The spatial distribution of the dominant molluscs is often a variation of the pattern of concentric rings observed on lavas, with Alviniconcha spp. at the tops of edifices where exposure to vent flow is the highest, and I. nautilei and B. brevior below. Our physico-chemical measurements indicate that because of rapid dispersion of vent fluid, habitable area for symbiont-containing fauna is quite limited on sulfide edifices, and the realized niches of the mollusc groups are narrower on sulfide edifices than on lavas. We suggest that competition plays an important role in determining the realized distributions of the mollusc groups on edifices. The other habitat, present in small patches of presumably hot, new anhydrite, is avoided by the dominant symbiont-containing molluscs and inhabited by crabs, shrimp and polynoids that are likely more heat tolerant. The ratio of sulfide concentration to temperature anomaly of vent fluids was significantly different between sulfide edifice sites and lava sites in the southern vent fields but not in the northern vent fields. We suggest that this is due to increased sulfide consumption by a large microbial consortium associated with the more friable andesitic lava substrates in the south.

URLhttp://www.sciencedirect.com/science/article/pii/S0967063712002233
DOI10.1016/j.dsr.2012.11.003