Expanding dispersal studies at hydrothermal vents through species identification of cryptic larval forms

TitleExpanding dispersal studies at hydrothermal vents through species identification of cryptic larval forms
Publication TypeJournal Article
Year of Publication2010
AuthorsAdams, DK, Mills, SW, Shank, TM, Mullineaux, LS
JournalMARINE BIOLOGY
Volume157
Pagination1049–1062
Date Publishedmay
Type of ArticleArticle
ISSN0025-3162
KeywordsHOV Alvin (Human Occupied Vehicle)
Abstract

The rapid identification of hydrothermal vent-endemic larvae to the species level is a key limitation to understanding the dynamic processes that control the abundance and distribution of fauna in such a patchy and ephemeral environment. Many larval forms collected near vents, even those in groups such as gastropods that often form a morphologically distinct larval shell, have not been identified to species. We present a staged approach that combines morphological and molecular identification to optimize the capability, efficiency, and economy of identifying vent gastropod larvae from the northern East Pacific Rise (NEPR). With this approach, 15 new larval forms can be identified to species. A total of 33 of the 41 gastropod species inhabiting the NEPR, and 26 of the 27 gastropod species known to occur specifically in the 9A degrees 50' N region, can be identified to species. Morphological identification efforts are improved by new protoconch descriptions for Gorgoleptis spiralis, Lepetodrilus pustulosus, Nodopelta subnoda, and Echinopelta fistulosa. Even with these new morphological descriptions, the majority of lepetodrilids and peltospirids require molecular identification. Restriction fragment length polymorphism digests are presented as an economical method for identification of five species of Lepetodrilus and six species of peltospirids. The remaining unidentifiable specimens can be assigned to species by comparison to an expanded database of 18S ribosomal DNA. The broad utility of the staged approach was exemplified by the revelation of species-level variation in daily planktonic samples and the identification and characterization of egg capsules belonging to a conid gastropod Gymnobela sp. A. The improved molecular and morphological capabilities nearly double the number of species amenable to field studies of dispersal and population connectivity.

DOI10.1007/s00227-009-1386-8