Export 2610 results:
Author [ Title(Desc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
E. Canale-Parola, Harwood, C. S., and Jannasch, H. W., An anaerobic spirochaete from deep sea hydrothermal vents, Applied and Environmental Microbiology, vol. 44, pp. 234–237, 1982.
P. Colombo, Neilson, R. H., and Kendig, M. W., Analysis and evaluation of a radioactive waste package retrieved from the Atlantic Ocean, in Radioactive Wastes and the Ocean, P. K. Park, Ed. New York, N.Y.: Wiley, 1983, pp. 237–268.
C. E. J. de Ronde, Walker, S. L., Ditchburn, R. G., F Tontini, C., Hannington, M. D., Merle, S. G., Timm, C., Handler, M. R., Wysoczanski, R. J., Dekov, V. M., Kamenov, G. D., Baker, E. T., Embley, R. W., Lupton, J. E., and Stoffers, P., The Anatomy of a Buried Submarine Hydrothermal System, Clark Volcano, Kermadec Arc, New Zealand, ECONOMIC GEOLOGY, vol. 109, pp. 2261–2292, 2014.
R. G. Waller, Adkins, J. F., Robinson, L. F., and Shank, T. M., Ancient DNA techniques : applications for deep-water corals, Bulletin of Marine Science, vol. 81, pp. 351–359, 2007.
P. Chevaldonne, Desbruyeres, D., and Childress, J. J., .. And some even hotter, Nature, vol. 359, pp. 593–594, 1992.
E. Uchupi, Schwab, W. C., Ballard, R. D., Francheteau, J. F., Hekinian, R., Blackman, D. K., and Sigurdsson, H., An Angus/Argo study of the neovolcanic zone along the East Pacific rise from the Clipperton fracture zone to 12 degrees N, Geo-Marine Letters, vol. 8, pp. 131–138, 1988.
J. F. Grassle, Animals in the soft sediment near the hydrothermal vents, Oceanus, vol. 27, pp. 63–66, 1984.
A. Streep, Another league under the sea: tomorrow's research subs open earth's final frontier, Popular Science, vol. 274, 2009.
S. Helmreich, An anthropologist underwater: Immersive soundscapes, submarine cyborgs, and transductive ethnography, American Ethnologist, vol. 34, pp. 621–641, 2007.
F. K. Wilckens, Reeves, E. P., Bach, W., Seewald, J. S., and Kasemann, S. A., Application of B, Mg, Li, and Sr Isotopes in Acid-Sulfate Vent Fluids and Volcanic Rocks as Tracers for Fluid-Rock Interaction in Back-Arc Hydrothermal Systems, Geochemistry Geophysics Geosystems, 2019.
R. D. Ballard, Application of deepwater mapping techniques in specific geologic programs project FAMOUS Cayman Trench, in Oceans '76: Second Annual Combined Conference, September 13-15, 1976, Sheraton Park Hotel, Washington, D.C., New York, N.Y.: IEEE, 1976, p. 87.
M. Taillefert, Luther, G. W., and Nuzzio, D. B., The application of electrochemical tools for in situ measurements in aquatic systems, Electroanalysis, vol. 12, pp. 401–412, 2000.
D. R. Yoerger, The application of supervisory control to underwater telerobots, in Robotics, Control, and Society: Essays in Honor of Thomas B. Sheridan, N. Moray, Ed. New York: Taylor and Francis, 1990, pp. 48–59.
H. W. Jannasch, Cuhel, R. L., Wirsen, C. O., and Taylor, C. D., An approach for in situ studies of deep-sea amphipods and their microbial gut flora, Deep-Sea Research. Part A, Oceanographic Research Papers, vol. 27, pp. 867–872, 1980.
E. E. Davis, Heesemann, M., Farrugia, J. J., Johnson, G., and Paros, J., APT: An Instrument for Monitoring Seafloor Acceleration, Pressure, and Temperature with Large Dynamic Range and Bandwidth, Bulletin of the Seismological Society of America, vol. 109, pp. 448-462, 2019.
J. S. Seewald, Cruse, A. M., and Saccocia, P. J., Aqueous volatiles in hydrothermal fluids from the Main Endeavour Field, northern Juan de Fuca ridge: Temporal variability following earthquake activity, Earth and Planetary Science Letters, vol. 216, pp. 575–590, 2003.
C. Vetriani and Reysenbach, A. - L., Archaea, in Encyclopedia of microbiology, vol. 1, L. Lederberg, Ed. San Diego, Calif.: Academic Press, 2000, pp. 319–331.
W. J. Brazelton, Ludwig, K. A., Sogin, M. L., Andreishcheva, E. N., Kelley, D. S., Shen, C. C., Edwards, R. L., and Baross, J. A., Archaea and bacteria with surprising microdiversity show shifts in dominance over 1,000-year time scales in hydrothermal chimneys, Proceedings of the National Academy of Sciences of the United States of America, vol. 107, pp. 1612–1617, 2010.
A. R. Thurber, Levin, L. A., Orphan, V. J., and Marlow, J. J., Archaea in metazoan diets: implications for food webs and biogeochemical cycling, ISME Journal, vol. 6, pp. 1602–1612, 2012.
C. Vetriani, Archaea, Origin of, in Encyclopedia of biodiversity, vol. 1, S. Levin, Ed. San Diego, Calif.: Academic Press, 2001, pp. 219–230.
S. A. Lincoln, Bradley, A. S., Newman, S. A., and Summons, R. E., Archaeal and bacterial glycerol dialkyl glycerol tetraether lipids in chimneys of the Lost City Hydrothermal Field, ORGANIC GEOCHEMISTRY, vol. 60, pp. 45–53, 2013.
B. D. Lanoil, La Duc, M. T., Wright, M., Kastner, M., Nealson, K. H., and Bartlett, D. H., Archaeal diversity in ODP legacy borehole 892b and associated seawater and sediments of the Cascadia Margin, FEMS Microbiology Ecology, vol. 54, pp. 167–177, 2005.
J. N. Bentley, Ventura, G. T., Dalzell, C. J., Walters, C. C., Peters, C. A., Mennito, A. S., Nelson, R. K., Reddy, C. M., Seewald, J. S., and Sievert, S. M., Archaeal lipid diversity, alteration, and preservation at the Cathedral Hill deep sea hydrothermal vent, Guaymas Basin, Gulf of California, and its implications regarding the deep time preservation paradox, Organic Geochemistry, vol. 163, 2022.
J. N. Bentley, G. Ventura, T., Dalzell, C. J., Walters, C. C., Peters, C. A., Mennito, A. S., Nelson, R. K., Reddy, C. M., Seewald, J. S., and Sievert, S. M., Archaeal lipid diversity, alteration, preservation at Cathedral Hill, Guaymas Basin, Gulf of California, and its link to the deep time preservation paradox, Organic Geochemistry, p. 104302, 2021.
C. T. S. Little and Vrijenhoek, R. C., Are hydrothermal vent animals living fossils?, Trends in Ecology and Evolution, vol. 18, pp. 582–588, 2003.