Export 2610 results:
Author [ Title(Desc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
J. F. Holden, Summit, M., and Baross, J. A., Thermophilic and hyperthermophilic microorganisms in 3–30°C hydrothermal fluids following a deep-sea volcanic eruption, FEMS Microbiology Ecology, vol. 25, pp. 33–41, 1998.
B. B. Jorgensen, Zawacki, L. X., and Jannasch, H. W., Thermophilic bacterial sulfate reduction in deep-sea sediments at the Guaymas Basin hydrothermal vent site (Gulf of California), Deep-Sea Research. Part A, Oceanographic Research Papers, vol. 37, pp. 695–710, 1990.
Z. A. Filatova, On the thermophilic deep-sea bottom faunal communities of the Pacific Ocean rift zones, Oceanology, vol. 20, pp. 520–524, 1980.
Z. A. Filatova, Thermophylic communities of deep-sea bottom fauna in rift zones of the Pacific Ocean, Oceanology, vol. 20, pp. 339–341, 1980.
A. I. Slobodkin, Reysenbach, A. - L., Slobodkina, G. B., Baslerov, R. V., Kostrikina, N. A., Wagner, I. D., and Bonch-Osmolovskaya, E. A., Thermosulfurimonas dismutans gen. nov., sp nov., an extremely thermophilic sulfur-disproportionating bacterium from a deep-sea hydrothermal vent, INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, vol. 62, pp. 2565–2571, 2012.
P. Chevaldonne, Fisher, C. R., Childress, J. J., Desbruyeres, D., Jollivet, D., Zal, F., and Toulmond, A., Thermotolerance and the ‘Pompeii worms', Marine Ecology Progress Series, vol. 208, pp. 293–295, 2000.
C. Vetriani, Speck, M. D., Ellor, S. V., Lutz, R. A., and Starovoytov, V., Thermovibrio ammonificans sp. nov.: A thermophilic, chemolithotrophic, nitrate ammonifying bacterium from deep-sea hydrothermal vents., International Journal of Systematic and Evolutionary Microbiology, vol. 54, pp. 175–181, 2004.
M. A. Tivey, Johnson, P. H., Bradley, A., and Yoerger, D. R., Thickness of a submarine lava flow determined from near-bottom magnetic field mapping by autonomous underwater vehicle, Geophysical Research Letters, vol. 25, pp. 805–808, 1998.
H. W. Jannasch, Wirsen, C. O., Nelson, D. C., and Robertson, L. A., Thiomicrospira crunogena sp. nov., a colorless sulfur-oxidizing bacterium from a deep-sea hydrothermal vent, International Journal of Systematic Bacteriology, vol. 35, pp. 422–424, 1985.
M. K. Scott, A thousand fathoms and beyond, Sea Frontiers, vol. 10, pp. 37–45, 1964.
G. C. Williams and Alderslade, P., Three new species of pennatulacean octocorals with the ability to attach to rocky substrata (Cnidaria: Anthozoa: Pennatulacea), ZOOTAXA, pp. 33–48, 2011.
J. H. McLean, Three new species of the family Neolepetopsidae (Patellogastropoda) from hydrothermal vents and whale falls in the Northeastern Pacific, Journal of Shellfish Research, vol. 27, pp. 15–20, 2008.
B. W. Govenar, Bergquist, D. C., Urcuyo, I. A., Eckner, J. T., and Fisher, C. R., Three Ridgeia piscesae assemblages from a single Juan de Fuca Ridge sulphide edifice: Structurally different and functionally similar, Cahiers de Biologie Marine, vol. 43, pp. 247–252, 2002.
S. M. Maher, Gee, J. S., Cheadle, M. J., and John, B. E., Three-dimensional magnetic stripes require slow cooling in fast-spread lower ocean crust, Nature, vol. 597, pp. 511-515, 2021.
W. K. Stewart, Three-dimensional modeling of seaflorr backscatter from sidescan sonar for autonomous classfication and navigation, in Proceedings of the 6th International Symposium on Unmanned Untethered Submersible Technology, June 12-14, 1989, Durham, N.H.: Marine Systems Engineering Laboratory, University of New Hampshire, 1989, p. 21 pages.
W. K. Stewart, Three-dimensional stochastic modeling using sonar sensing for undersea robotics, Autonomous Robots, vol. 3, pp. 121–143, 1996.
M. J. Hornbach, Ruppel, C. D., and Van Dover, C. L., Three-dimensional structure of fluid conduits sustaining an active deep marine cold seep, Geophysical Research Letters, vol. 34, p. L05601, 2007.
S. A. Little, Stolzenbach, K. D., and Grassle, J. F., Tidal current effects on temperature measurements in diffuse hydrothermal flow: Guaymas Basin, Geophysical Research Letters, vol. 15, pp. 1491–1494, 1988.
A. J. Williams and Tivey, M. K., Tidal currents at hydrothermal vents, Juan de Fuca Ridge, Sea Technology, vol. 42, pp. 62–96, 2001.
E. E. Davis and Becker, K., Tidal pumping of fluids within and from the oceanic crust: new observations and opportunities for sampling the crustal hydrosphere, Earth and Planetary Science Letters, vol. 172, pp. 141–149, 1999.
G. W. Cairns, Evans, R. L., and Edwards, R. N., A time domain electromagnetic survey of the TAG hydrothermal mound, Geophysical Research Letters, vol. 23, pp. 3455–3458, 1996.
D. Feng, Birgel, D., Peckmann, J., Roberts, H. H., Joye, S. B., Sassen, R., Liu, X. - L., Hinrichs, K. - U., and Chen, D., Time integrated variation of sources of fluids and seepage dynamics archived in authigenic carbonates from Gulf of Mexico Gas Hydrate Seafloor Observatory, Chemical Geology, vol. 385, pp. 129–139, 2014.
C. Johansen, Todd, A. C., and MacDonald, I. R., Time series video analysis of bubble release processes at natural hydrocarbon seeps in the Northern Gulf of Mexico, Marine and Petroleum Geology, vol. 82, pp. 21–34, 2017.
G. T. Rowe, Keller, G., Edgerton, H. E., Staresinic, N., and MacIlvaine, J. C., Time-lapse photography of the biological reworking of sediments in Hudson Submarine Canyon, vol. 74-79. Woods Hole, Mass.: Woods Hole Oceanographic Institution, 1974, p. 552.
T. S. Moore, Shank, T. M., Nuzzio, D. B., and Luther, G. W., Time-series chemical and temperature habitat characterization of diffuse flow hydrothermal sites at 9 degrees 50′N East Pacific Rise, Deep-Sea Research. Part II: Topical Studies in Oceanography, vol. 56, pp. 1616–1621, 2009.