Export 237 results:
Author [ Title(Desc)] Type Year
Filters: First Letter Of Title is D  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
D
J. M. Brooks, Kennicutt, M. C., Fisher, C. R., Macko, S. A., Cole, K., Childress, J. J., Bidigare, R. R., and Vetter, R. D., Deep-sea hydrocarbon seep communities: Evidence for energy and nutritional carbon sources, Science, vol. 238, pp. 1138–1142., 1987.
A. V. Gebruk, Chevaldonne, P., Shank, T. M., Lutz, R. A., and Vrijenhoek, R. C., Deep-sea hydrothermal vent communities of the Logatchev area (14 degrees 45'N, Mid-Atlantic Ridge): Diverse biotypes and high biomass, Journal of the Marine Biological Association of the United Kingdom, vol. 80, pp. 383–393, 2000.
R. R. Hessler and Kaharl, V. A., The Deep-sea hydrothermal vent community: An overview, in Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geochemical Interactions, S. E. Humphris, Ed. Washington, D.C.: American Geophysical Union, 1995, pp. 72–84.
R. A. Lutz, Desbruyeres, D., Shank, T. M., and Vrijenhoek, R. C., A deep-sea hydrothermal vent community dominated by Stauromedusae, Deep-Sea Research. Part II: Topical Studies in Oceanography, vol. 45, pp. 329–334, 1998.
C. Vetriani, Voordeckers, J. W., Crespo-Medina, M., O'Brien, C. E., Giovannelli, D., and Lutz, R. A., Deep-sea hydrothermal vent Epsilonproteobacteria encode a conserved and widespread nitrate reduction pathway (Nap), ISME JOURNAL, vol. 8, pp. 1510–1521, 2014.
E. St John, Flores, G. E., Meneghin, J., and Reysenbach, A. L., Deep-sea hydrothermal vent metagenome-assembled genomes provide insight into the phylum Nanoarchaeota, Environmental Microbiology Reports, vol. 11, pp. 262-270, 2019.
G. T. Rowe, Polloni, P. T., and Haedrich, R. L., The deep-sea macrobenthos on the continental margin of the northwest Atlantic Ocean, Deep-Sea Research. Part A, Oceanographic Research Papers, vol. 29, pp. 257–278, 1982.
A. T. Barnes, Quetin, L. B., Childress, J. J., and Pawson, D. L., Deep-sea macroplanktonic sea cucumbers: suspended sediment feeders captured from deep submergence vehicle, Science, vol. 194, pp. 1083–1085, 1976.
H. W. Jannasch and Wirsen, C. O., Deep-sea microorganisms: In situ response to nutrient enrichment, Science, vol. 180, pp. 641–643, 1973.
W. W. Chadwick and Stapp, M., A deep-sea observatory experiment using acoustic extensometers:precise horizontal distance measurements across a mid-ocean ridge, IEEE Journal of Oceanic Engineering, vol. 27, pp. 193–201, 2002.
J. R. Voight, A deep-sea octopus (Graneledone cf. boreopacifica) as a shell-crushing hydrothermal vent predator, Journal of Zoology, vol. 252, pp. 335–341, 2000.
D. M. Karl, Wirsen, C. O., and Jannasch, H. W., Deep-sea primary production at the Galapagos hydrothermal vents, Science, vol. 207, pp. 1345–1347, 1980.
J. R. Heirtzler and Grassle, J. F., Deep-sea research by manned submersibles, Science, vol. 194, pp. 294–299, 1976.
V. Robigou and Ballard, R. D., Deep-Sea research takes a new approach, EOS, Transactions, American Geophysical Union, vol. 75, pp. 81,87–88, 1994.
J. M. Edmond, Deep-sea science needs in marine geochemistry, Marine Technology Society Journal, vol. 24, pp. 32–33, 1990.
L. F. Robinson, Adkins, J. F., Scheirer, D. S., Fernandez, D. P., Gagnon, A. C., and Waller, R. G., Deep-sea scleractinian coral age and depth distributions in the northwest Atlantic for the last 225,000 years, Bulletin of Marine Science, vol. 81, pp. 371–391, 2007.
F. Park, Deep-sea vehicles, International Science and Technology, vol. 39, pp. 26–38, 1965.
R. A. Lutz and Kristof, E., Deep-sea vents: Science at the extreme, National Geographic Magazine, vol. 198, pp. 116–127, 2000.
B. R. T. Simoneit, Lonsdale, P. F., Edmond, J. M., and Shanks, W. C., Deep-water hydrocarbon seeps in Guaymas Basin, Gulf of California, Applied Geochemistry, vol. 5, pp. 41–49, 1990.
U. Fehn, Siegel, M. D., Robinson, G. R., Holland, H. D., Williams, D. L., Erickson, A. J., and Green, K. E., Deep-water temperatures in the FAMOUS area, Geological Society of America Bulletin, vol. 88, pp. 488–494, 1977.
S. P. Castro, Borton, M. A., Regan, K., de Angelis, I. H., Wrighton, K. C., Teske, A. P., Strous, M., and Ruff, S. E., Degradation of biological macromolecules supports uncultured microbial populations in Guaymas Basin hydrothermal sediments, Isme Journal, 2021.
A. Colaco, Dehairs, F., Desbruyeres, D., Le Bris, N., and Sarradin, P. - M., Delta 13C signature of hydrothermal mussels is related with the end-member fluid concentrations of H2S and CH4 at the Mid-Atlantic Ridge hydrothermal vent fields, Cahiers de Biologie Marine, vol. 43, pp. 259–262, 2002.
G. H. Rau, McHugh, C. M., Harrold, C., Baxter, C., Hecker, B., and Embley, R. W., [delta]13C, [delta]15N and [delta]18O of Calyptogena phaseoliformis (bivalve mollusc) from the Ascension Fan-Valley near Monterey, California, Deep-Sea Research. Part A, Oceanographic Research Papers, vol. 37, pp. 1669–1676, 1990.
D. R. Yoerger and Newman, J. B., Demonstration of closed-loop trajectory control of an underwater vehicle, in Oceans '85 Conference Record : Ocean Engineering and the Environment, vol. 2, New York, N.Y.: IEEE, 1985, pp. 1028–1033.
M. W. Bowles, Nigro, L. M., Teske, A. P., and Joye, S. B., Denitrification and environmental factors influencing nitrate removal in Guaymas Basin hydrothermally altered sediments, FRONTIERS IN MICROBIOLOGY, vol. 3, 2012.

Pages