Export 2610 results:
Author [ Title(Desc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
M
F. B. Wooding, Bowen, A. D., Yoerger, D. R., Chave, A. D., and Dodeman, A. H., Mechanical design and deployment of the Hawaii-2 Observatory, in Proceedings of International Workshop on Scientific Use of Submarine Cables: Marine geophysical research using undersea cables, Japan Print Center, 1997, pp. 172–174.
N. T. Ulrich and Kumar, V., Mechanical design methods of improving manipulator performance, in Robots in Unstructured Environments: Fith International Conference on Advanced Robotics: '91 ICAR, June 19-22, 1991, Pisa, Italy, New York: IEEE, 1991, pp. 515–520.
T. A. Terry, Mechanical engineering, geotechnology and research submersible operations. I. New York, N.Y.: American Society of Mechanical Engineers, 1973, p. 8.
J. C. Mutter and Karson, J. A., Mechanical extension of oceanic lithosphere at slow-spreading ridges: Primary influence on morphology and segmentation, EOS, Transactions, American Geophysical Union, vol. 73, p. 286, 1992.
J. A. Karson, Mechanical extension of the median valley floor along the Mid-Atlantic Ridge in the MARK area, EOS, Transactions, American Geophysical Union, vol. 76, p. 582, 1995.
C. R. Smith, DeMaster, D. J., and Fornes, W. L., Mechanisms of age-dependent mixing on the bathyal California margin: The young and the restless, in Organism-sediment interactions, J. Y. Aller, Ed. Columbia, S.C.: University of South Carolina Press, 2001, pp. 263–278.
H. C. Wu, Chen, Y., Yang, C. J., Zhang, J. F., Zhou, H. Y., Peng, X. T., and Ji, F. W., Mechatronic integration and implementation of in situ multipoint temperature measurement for seafloor hydrothermal vent, Science in China Series E-Technological Sciences, vol. 50, pp. 144–153, 2007.
R. D. Ballard, The Medea/Jason remotely operated vehicle system, Deep-Sea Research. Part I: Oceanographic Research Papers, vol. 40, pp. 1673–1687, 1993.
S. V. Galkin, Megafauna associated with hydrothermal vents in the Manus Back-Arc Basin (Bismarck Sea), Marine Geology, vol. 142, pp. 197–206, 1997.
K. L. Haedrich and Rowe, G. T., Megafaunal biomass in the deep sea, Nature, vol. 269, pp. 141–142, 1977.
N. Lampadariou, Syranidou, E., Sevastou, K., and Tselepides, A., Meiobenthos from biogenic structures of the abyssal time-series station in the NE Pacific (Station M), Deep-Sea Research Part Ii-Topical Studies in Oceanography, vol. 173, 2020.
A. Gracia, Levin, L. A., and Zea, S., Meio-epifaunal wood colonization in the vicinity of methane seeps, Marine Ecology-an Evolutionary Perspective, 2019.
P. Briggs, Men in the sea. New York, N.Y.: Simon and Schuster, 1968, p. 128.
C. Vetriani, Chew, Y. S., Miller, S. M., Yagi, J., Coombs, J., Lutz, T. A., and Barkay, T., Mercury adaptation among bacteria from a deep-sea hydrothermal vent, Applied and Environmental Microbiology, vol. 71, pp. 220–226, 2005.
L. S. Sherman, Blum, J. D., Nordstrom, D. K., McCleskey, R. B., Barkay, T., and Vetriani, C., Mercury isotopic composition of hydrothermal systems in the Yellowstone Plateau volcanic field and Guaymas Basin sea-floor rift, Earth and Planetary Science Letters, vol. 279, pp. 86–96, 2009.
J. R. Voight, Meristic variation in males of the hydrothermal vent octopus, Muusoctopus hydrothermalis (Cephalopoda: Octopodidae), JOURNAL OF THE MARINE BIOLOGICAL ASSOCIATION OF THE UNITED KINGDOM, vol. 92, pp. 361–366, 2012.
L. Macelloni, Lutken, C. B., Ingrassia, M., Emidio, M. D. ', and Pizzi, M., Mesoscale biogeophysical characterization of Woolsey Mound (northern Gulf of Mexico), a new attribute of natural marine hydrocarbon seeps architecture, Marine Geology, vol. 380, pp. 330–344, 2016.
E. Uchupi, Ellis, J. P., Austin, J. A., Keller, G. H., and Ballard, R. D., Mesozoic-Cenozoic regressions and the development of margin off northeastern North America, in Ocean Floor: Bruce Heezen Commemorative Volume, vol. 1 (text), R. A. Scrutton, Ed. New York, N.Y.: Wiley, 1982, pp. 81–95.
H. Felbeck, Powell, M. A., Hand, S. A., and Somero, G. N., Metabolic adaptations of hydrothermal vent animals, in Hydrothermal vents of the Eastern Pacific: An overview, M. L. Jones, Ed. Vienna, Va.: INFAX, 1985, pp. 261–272.
J. J. Childress, Arp, A. J., and Fisher, C. R., Metabolic and blood characteristics of the hydrothermal vent tube worm Riftia pachypitila, Marine Biology, vol. 83, pp. 109–124, 1984.
A. J. Arp, Childress, J. J., and Fisher, C. R., Metabolic and blood gas transport characteristics of the hydrothermal vent bivalve Calyptogena magnifica, Physiological Zoology, vol. 57, pp. 648–662, 1984.
J. J. Childress and Thuesen, E. V., Metabolic potentials of deep-sea fishes: a comparative approach, in Environmental and Ecological Biochemistry, P. W. Hochachka, Ed. New York: Elsevier, 1995, pp. 175–196.
M. S. Henry, Childress, J. J., and Figueroa, D., Metabolic rates and thermal tolerances of chemoautotrophic symbioses from Lau Basin hydrothermal vents and their implications for species distributions, Deep-Sea Research. Part I: Oceanographic Research Papers, vol. 55, pp. 679–695, 2008.
J. J. Childress and Mickel, T. J., Metabolic rates of animals from the hydrothermal vents and other deep-sea habitats., in Hydrothermal vents of the Eastern Pacific: An overview, M. L. Jones, Ed. Vienna, Va.: INFAX, 1985, pp. 249–260.
J. J. Childress, Cowles, D. L., Favuzzi, J. A., and Mickel, T. J., The metabolic rates of deep-sea benthic decapod crustaceans decline with increasing depth primarily due to the decline in temperature, Deep-Sea Research. Part A, Oceanographic Research Papers, vol. 37, pp. 929–949, 1990.

Pages